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Abstract

The Active Nodal Task Seeking (ANTS) approach to the design of multicom-

puter systems is named for its basic component: an Active Nodal Task-Seeker

(ANT). In this system, there is no load balancing or load sharing, instead, each

ANT computing node is actively finding out how it can contribute to the execu-

tion of the needed tasks. A run-time parti- on is established such that some of

the ANT computing nodes are under exhaustive diagnosis at any given time. An

ANTS multicomputer system can achieve a mean time to failure of more than 20

years with just 8 computing nodes and 3 buses, while the minimum requirements

are 3 computing nodes and 1 bus, and with a worst case computing node failure

rate of 5 x 10-' per hour.

This work has been motivated by the need to develop high-performance mul-

ticomputer systems for radar, active and passive sonar, and electronic warfare

that can provide ultra-dependable performance for more than 20 years without

field repairs. We argue that high performance is also an attribute of an ANTS 0

computing system, because the overhead of dynamic task scheduling is reduced

and because efficient use is made of the available processing resources. D LiT
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1 Introduction

Active Nodal Task Seeking (ANTS) is an approach to the design of high-performance, ultra-

dependable multicomputer systems. The goal is to design an ultra-dependable, real-time,

and distributed system for computationally intensive signal and data processing applications.

The standard for ultra-dependability is set at a mean time to failure (MTTF) exceeding

20 years. The hardware organization of ANTS is a distributed systems with multiple-bus

connected stand-alone computing nodes. This system uses a novel operating mode to achieve

the ultra-dependability and maintain a high degree of computational performance.

The only direct predecessor to ANTS is the now-forgotten, but very successful, Safeguard

multiprocessor system of Bell Telephone Laboratories. Before reading on or looking at our

list of references, we urge the reader to search his or her memory for information about

the existence or architecture of the Safeguard system. In books on the design of computer

systems [1, 2, 3] no references to or mention of Safeguard appears. Safeguard [41 was the

high-performance, dependable multiprocessor for computation and control of the Safeguard

antiballistic missile (ABM) defense system of the early 1970's. ANTS extends and generalizes

the approach of Safeguard, and we intend to provide performance and dependability analysis

for ANTS multicomputer systems. Two other predecessor systems are FTMP [7] and SIFT

[8]. Unlike ANTS, these systems use at least three times the resources required by the

application. Triads of processors are assigned to execute task segments. Also FTMP adopted

a fully synchronous approach which uses a hardware implemented bit-by-bit voting on all

transactions. The asynchronous nature of ANTS is closer to that of SIFT.

The term dependability collectively describes the common fault-tolerant system measure-

ments, such as reliability, availability, MTTF, etc.. Depending on the mission, one or more of

these measurements are used in the system specification [5]. For instance, electronic switch-

ing systems (ESSs) are designed to achieve high availability [6]. Avionics control systems,

such as FTMP and SIFT are designed to achieve ultra-high reliability for a short mission

time. For military and space-bound applications, a long MTTF is required to ensure the

operation under severe circumstances [5].

Distributed systems are potentially fault-tolerant. However, utilizing this intrinsic capa-

bility for fault-tolerance is not a straightforward task. Many existing dependable systems
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still use special hardware designs to achieve the desired level of dependability. The Ad-

vanced Architecture On-board Processor by Harris Corporation [9, 10] uses self-checking

RISC processors and chordal ring. The Advanced Automation System by IBM [11, 12]

needs redundant components at each subsystem due to its wide area distribution nature.

The on-board computer of the Japanese satellite Hiten [13] uses stepwise negotiating voting,

which is a combination of mutual checking by data comparison and self-checking.

Special hardware components may not be as necessary if an appropriate software ap-

proach is applied. In Delta-4 [14], active replication of software programs is used to ensure

fault-tolerance. A similar strategy is used in Manetho [15], where each application process

is replicated by a set named: troupe. These systems are distributed systems with no special

hardware designed for fault-tolerance. Unfortunately, replication of programs also means a

significant reduction in system computational performance.

Existing dependable multicomputer or multiprocessor designs assume that the comput-

ing nodes or the processors are passive in their operating mode. Load balancing or load

sharing [16] is thus required because the idle computing nodes remain idle until new jobs are

distributed to them. The busy nodes are responsible for distributing tasks to the idle ones.

From the fault tolerance perspective, active nodal task seeking (ANTS) offers several

advantages:

"* On-line error checking is simple and straightforward. The two extreme failure modes:

fail-silent and fail-uncontrolled [14] are easily detected since the failed computing node

will not be actively seeking a new task in a fixed time frame.

"* Fault tolerance can be attained without seriously degrading the system performance.

There is no need for special hardware or replication of programs in ANTS and thus

no serious performance degradation. If ultra-reliability is required, during the critical

phase of the mission, jobs are triplicated in an asynchronous, distributed mode. In this

case, the voting function is implemented in software similar to that in SIFT [8].

"* There is no need for synchronization of nodes or programs. The active nodal task-

seeker (ANT) computing nodes operate asynchronously and independently. Of course,

they must work cooperatively. And each ANT node, when seeking a new taek, must be

aware of the pertinent work that has been done by itself and other ANT nodes as it is
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posted in the bulletin board (task tables). Each ANT node keeps its own copy of the

task table. The entries of these distributed task tables are updated via broadcasting

of task acquiring and task completion messages over the communication network.

* The ANTS system is designed such that no single dependability-critical component ex-

ists in the system. Error checking functions are handled distributively. Near coincident

failures or even multiple failures can only degrade the system performance temporarily

but cannot paralyze the continuous operation of an ANTS system.

In this paper, we will only briefly compare the ANTS concept with conventional ap-

proaches for execution of real-time tasks in a distributed computing environment. This is

an area of current concentration in our research. The ANTS concept is efficient since only

little time and little computational resources are used for scheduling tasks on the comput-

ing nodes. Therefore, computing nodes can do more work on the real-time applications in

any fixed time interval. Of course, this requires an extra, one-time effort when developing

and programming the real-time tasks. The ANTS concept is effective because the system

throughput is close to that of an ideal system in which each processor that is not under

repair knows exactly how to contribute to the current set of real-time application tasks or

testing tasks. Performance analysis of ANTS will be presented in a separate paper.

This paper addresses the design features of ANTS which are aimed at enhancing the

dependability. An analytical model is developed to evaluate the mean time to failure (MTTF)

of the ANTS system. The design goal is set at achieving an MTTF of 20 years and more.

We show that a simple combination of 8 computing nodes and 3 buses, with minimum

requirement of 3 computing nodes and one bus, could achieve this goal, assuming that the

computing node failure rate is 5 x 10- per hour, or a MTTF of 2,000 hours. This means

that commercially available components are suitable for constructing an ultra-dependable

ANTS system. Also the specialized applications for which ANTS is intended, such as a

digital-cellular-radio based station, a central-office digital-communications signal processing

interface, an active/passive sonar system, or a radar system naturally lend themselves to

efficient and effective reasonableness checks. Error detection/correction codes provide such

checks in communication systems. And the physical consistency of estimated parameter

values provide such checks in sonar and radar.
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2 ANTS Multicomputer System

ANTS is based on the concept that each active nodal task-seeker (ANT) node must be

capable of stand-alone operation in which it accesses a bulletin board to find the state of

high priority tasks and post its intended contribution during a prescribed time slice of work.

In this paper, we use a simple architecture to demonstrate the features and capability of

ANTS concept so that we can concentrate on analyzing dependabilities. This architecture

will eventually be described in more detail as modifications are incorporated to provide

improved performance. Motivation will be derived from the requirements of digital signal

processing algorithm implementation.

Figure 1 shows a hardware organization of ANTS: stand-alone computing nodes inter-

connected by buses.

2.1 Run Time Partitioning

The computing nodes, as well as the buses, are partitioned into three groups during run

time: the up-and-running green group, the stop-and-checking yellow group and the red

group for removed faulty nodes and buses. The number of computing nodes allocated for

the green group must always be greater than the minimum requirement for execution of

the applications at any given time. The rest of the computing nodes are then in the yellow

group unless they have been found to fail, in which case they are removed to the stopped, red

group. The grouping is based on the status of the computing nodes and/or buses. Therefore,

there is no visible physical grouping, and no need for special hardware design for switching

between the two run-time groups.

Since each computing node seeks work for itself, placing a computing node in the yellow,

checking group is accomplished by making the diagnostic program the highest priority task

for it, through a timer for example. To exercise the bus, one of the yellow computing nodes

will gain exclusive access to one of the buses and check its vitality. In other words, there

are two types of diagnostic programs: one checks computing node only and the other checks

both a computing node and a bus.

Besides the diagnostic and other bookkeeping functions, all jobs are initiated by in-

put/output devices. We assume that all ANT nodes acknowledge the job initiations and
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create the entries in their respective task table locally. There is a certain degree of con-

ceptual similarity between ANTS and FTMP in the assignment of jobs to processing units

although the implementation differs in many aspects. In FTMP, as soon as the next available

triad is formed, it is assigned with the next waiting job. In ANTS, the next available node

grabs the next available task. The main difference being that each ANTS node maintains

its own task table, which is coherent with the task tables of other ANTS nodes.

2.2 Concurrent Error Detection for Control Transfer Errors

The failure modes of an ANT node can be classified into the following two categories: control

transfer errors and data manipulation errors. A control transfer error may manifest itself in

the following three scenarios:

1. Fail-silent: the faulty ANT node cannot send out any message over the network due

to the failure.

2. Babbling: the faulty ANT node keeps sending meaningless messages over the network

and may eventually block out all communication. This is a type of fail-uncontrolled

failure.

3. Tampering: the faulty ANT node is failed in such a way that the electrical character-

istics of the communication network is destroyed, i.e. a short to the ground on the

communication wire. This is a worst case scenario with a relatively small probability

and can only be handled by special hardware design.

Since each computing node has an active role in seeking out work, a fail-silent node is

easy to identify. A fail-silent node will not ask for a job for an extensive period of time.

If a failure occurs after a new job has been acquired, then the failed node is unable to

report a completion, even if it is still possible, with the fixed time period. For easy real-

time scheduling, each task is defined such that it can be completed in a fixed time frame.

Therefore, we may monitor the completion time of each task to detect the fail-silent nodes.

For general purpose applications, partitioning of a program into fixed completion time

frame tasks requires a special compiler that can accurately estimate the execution time. This

will not be the case for the proposed system. First, the system is designed to handle sonar
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and/or radar signal processing; the programs to be executed have been specified. Secondly,

the fixed time frame constraint is not a hard constraint. The partitioning of a program mdst

also take into account the parallelism between the tasks. In fact, a guaranteed parallelism

between the tasks is the first priority in the task division. Therefore, some tasks may

complete much earlier than the pre-selected time. A repeating process is required to select

the proper time frame of the system.

The time limit set for the time-out checking must be greater than the time selected for

the fixed time frame. The main reason for this consideration is that the communication time

is a random variable. If we insist on declaring a node failure whenever it exceeds a tight

time limit, we may have a great number of false alarms.

When a faulty ANT node sends out meaningless messages and jams the traffic on the

communication network, it can be detected easily since all ANT nodes check all broadcasting

messages on the network. Further, all broadcasting message has a predefined format and

protocol. An incorrect transmission can be detected almost immediately. The electrical

characteristics of the network may also be destroyed by a failed ANT node such that further

communication is impossible. This type of failures can be avoided using similar design as

the Bus Guard (BG) in FTMP [7]. However, we caution here that this type of design is

device dependent. Detailed designs can only be derived for a specific implementation. We

also note that this type of failure may not be a catastrophic one. When several independent

peripheral devices axe used to handled buses, respectively, we may see that the probability

of all bus communications being wiped out is negligibly small.

In an ANTS system, the communication of an ANT node is monitored by two other

designated ANT nodes. In other words, an ANT node is responsible for monitoring two

other ANT nodes. For this purpose, each ANT node in the green group is assigned with a

number. Each ANT node checks the broadcasting messages constantly not only for its own

message but also for the messages directed to the two ANT nodes that it monitors. When a

task is acquired by an ANT node and no further message about the completion of that task

was sent by that ANT node for an extensive period of time, the two ANT nodes that monitor

this ANT node will sense a time out. Since all ANTS operations are asynchronous, the two

ANT nodes may not detect this time-out simultaneously. The ANT node with a higher

number must take the initiative and sends inquiry to the other ANT node that monitors the
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node in question. When a confirmation* is received, the ANT node with time-out is declared

faulty and is moved to the yellow group. A similar situation occurs when an ANT node

sends some meaningless messages over the network.

Let's use a simple example to demonstrate this technique. Assuming that we have four

nodes in the green group and they are numbered from one to four. Node 1 is monitored by

node 2 and node 4, and Node 2 is monitored by node 1 and node 3, etc. If node 3 did not

send out a message within the predefined time, and node 4 senses this situation, node 4 will

first communicates with node 2 for verification. If node 2 is fault-free, it will confirm the

finding of node 4 and declare that node 3 is failed.

If node 2 has failed and does not answer node 4 within the pre-defined time, node 4 will

send an inquiry to node 1 to check the validity of node 2. If node 1 verifies that node 2 has

not been responding for a long time, nodes 2 and 3 are both declared faulty. Note that when

nodes 2 and 3 are both faulty, node 1 will not take the initiative to send out an inquiry since

it has a lower number. In this case, node 1 is waiting for node 3 to send the inquiry.

We note that the above concurrent error detection techniques for control transfer errors

are for ultra-long MTTF missions. To provide higher reliability, the executions of critical

tasks can be triplicated to provide the on-line error masking capability.

2.3 Concurrent Error Detection for Data Manipulation Errors

Failures may affect only the data manipulations. Computed results may be incorrect. To

detect these erroneous computed results, a reasonableness checking function is associated

with each job. It checks all the computed results before an acceptance. Special conditions

on some operations can also be derived for the checking purpose. For example, in a Fast

Fourier Transform (FFT) computation, the sum of the squared absolute values of the inputs

is equal to the sum of squared absolute values of the transformed outputs. Similar checking

is also possible for some matrix operations. Other type of conditions such as the a priori

knowledge of physical limitations and special mission environment parameters will also be

used in the reasonableness checking. For instance, the speed of objects monitored by a radar

will lie within a physical reasonable range.

Reasonableness checking cannot guarantee full fault coverage. In contrast, a triplicated
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program can guarantee not only a full fault coverage, but also an immediate correction.

Whereas, using the reasonableness checking, retry or recomputation may be required. How-

ever, the consideration here is that the such a fault coverage may not be necessary and that

the triplication degrades the system performance significantly. High fault coverage is not

necessary for data manipulation errors because data integrity is not always the criterion of

dependability during the entire mission. In a typical radar tracking mission, unless a close

contact with enemy has been engaged, we can tolerate a few ms of not 100% correct, but

reasonable, radar outputs.

If ultra-reliability is required during a particular phase of the mission, software replication

as in [14, 15] can. be used. This can be easily implemented on ANTS. Three entries instead

of one will be generated in the task tables for each task of the critical job. This critical job

is considered completed when all replications have been completed and the checking result

is successful. The voting function is implemented in software as a final task of the job,

similar to that in SIFT [8]. Moreover, the concept of N-version programming [17), where the

replicated programs are written by different software teams, can also be easily implemented

on ANTS.

An appropriate application environment can be found in the space shuttle on-board

computer system [18]. This system is designed for high availability with no fault masking

capability for most of its mission time. However, during critical phases of the mission, e.g.

take-off and re-entry, triplication with three different versions of programs are executed to

ensure a high reliability in these short periods. We envision a similar application environment

and thus the design philosophy is very different from that found in FTMP and SIFT.

2.4 Recovery and Re-Enlistment

When a potentially failed computing node is identified in the green group, it is placed in the

yellow, checking group immediately. Of course, one of the nodes in the yellow group must

be released to the green group to maintain the operational requirement. There are three

different situations for different recovery strategies:

9 The failed node is executing a testing function, not an any operational task, when it

fails. There is no need for recovery at all.
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"* The failed node is executing an operational task when it fails. Every fault-free ANT

node will re-initialize the entry of that task such that it will again be available for

execution by a free ANT node seeking work. Because the running time of each task

segment must be short in order to satisfy real-time constraints, very little computations

have been lost.

"* The failed component is a bus, and once it is identified, will be placed in the yellow

group immediately. There is no need for recovery if the bus contains no memory

elements.

These recovery strategies apply to only the ANT nodes in the green group. If a node in

the yellow group is found faulty, a cold start procedure is initiated and then the diagnostic

program is used to verify the checking result. When an ANT node is released from the yellow

group to the green group, its task table is created from communicating with the ANT nodes

that monitor it.

The system makes no distinction between a failed subsystem or a subsystem for routine

check up in the yellow group. The only difference is that a failed subsystem will go through

the cold start procedure before the diagnostic program checking. In addition, the failure type

and the time of failure will be recorded in a failure log of the failed node after the cold start.

If the result of diagnostic program checking confirms a failure, the node is removed from the

system into a red stop group. If no failure could be identified, the node will be considered

operational and will be released back to the green group. We call this re-enlistment. Re-

listment occurs whenever the node failure is transient: a failure that appears only for a short

time. Since a cold start is performed after a failure is identified, a transient failure will no

longer exist in the subsystem.

Since intermittent and transient failures occur more frequently during run time [18),

especially in modern VLSI-based systems [19], there is no need to remove a component once

a failure has been recorded. The record kept at each node will indicate the number and

frequency of failure history. If a computing node fails frequently, it will be removed from

the system. This situation could be induced by two possibilities: the node is on the brink of

a permanent failure thus increasing the frequency of transient failure occurrences; or there

exists a failure which is undetectable by the diagnostic program. It is impossible to design a
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diagnostic program with a 100% realistic failure coverage, although it may guarantee a 100%

coverage on modeled failures.

The re-enlistment of an ANT node with transient or intermittent failure makes the ANTS

system behave similar to a repairable system in dependability evaluation. The ANT nodes

in the yellow group can be considered as hot spares. As for maintainability, the diagnostic

programs which are incorporated in an ANTS design can be very useful for field engineers

to perform corrective maintenance. During run time checking, the purpose of the diagnostic

program is to verify or to identify the existence of failures. For field repair, the diagnostic

program should be augmented with the capability to locate the failures.

3 Dependability Modeling

In the following analysis, we assume that the failure rates of all components are exponentially

distributed. We also deal with only the single failure cases. The main reason is because

near-coincident failures or even multiple failures in an ANTS system will not induce a total

system failure. Although, the inclusion of coverage factors and the use of more accurate

failure function, such as Weibull, will give a more accurate evaluation [5], the presented

analysis is sufficient in providing information for the system design and fine tuning. For this

analysis, the field repair by maintenance engineers is not considered.

The ANTS is considered as a serial system with a KP-out-of-NP, (NP, KP), computing

subsystem and a KB-out-of-NB, (NB, KB), bus subsystem. The system failure rate is the

sum of the failure rates of the two subsystems [20]. Therefore, the MTTF of the system may

be computed as
1

MTTFsy, + 1(1MTTFp + MTTFB

where MTTFp is the MTTF of (NP, KP) computing node subsystem and MTTFB is the

MTTF of the (NB, KB) bus subsystem. The system is considered to have failed if less than

KP processors or KB buses remain fault-free.

Even though there is no repair facility, the dependability of ANTS multicomputer system

could be modeled using birth and death process due to the re-enlistment. Figure 2 shows the

Markov model for the subsystems. The failure rate, A will eventually be replaced by A7P, the

computing node failure rate, or Ab the bus failure rate. The failures considered include both
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transient and permanent types. Therefore, AP and Ab represent the arrival rate of transient

and/or permanent failures. The birth rate in Figure 2 is pD, where p is the rate for diagnostic

program checking and D is defined as

D = Prob {failure is detectable} x Prob {failure is transient}. (2)

In other words, D is the product of failure coverage of the diagnostic program and the ratio

of transient failures.

The states in Figure 2 represent the number of fault-free processors or buses. The steady-

state probabilities of states in Figure 2 are expressed as [20]:

Pk= ( )Pk+1 (3)pD

for 0< k < N. Since
N-1

PN =- Pi, (4)
i=O

we find
1

PN M-0 (A P__ii" (5)

For the steady-state availability A,, of a K-out-of-N subsystem, K components must be

operational in an N component initial set up. The formula for A,. is

N

A,,s= Ep . (6)
i=K

The mean time to failure (MTTF) is the expected time of system survival. Thus, the steady-

state availability is the fraction of time that the system is operational [21], such that

MTTF

A,, = MTTF + MTTR (7)

Here, the MTTR is the mean time to repair of the system. It is the time for a repair after

the system has failed (has less than K fault-free components). Since the repair mechanism

in ANTS is a diagnostic step followed by a re-enlistment step,

MTTR = pD. (8)

Combining the above two equations, we find

MTTF pDAS, (9)
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This model is used to evaluate the MTTF of computing subsystem and that of bus

subsystem: MTTFp and MTTFB, respectively. The MTTF of the system is then computed

using equation (1).

4 Mean Time To Failure

Let us consider a design goal of the ANTS multicomputer system achieving a MTTF of

more than 20 years, or 175,200 hours. We use the model developed in the previous section

to examine the effects of computing node failure rate and the D to the system MTTF. We

show that the ANTS concept could indeed tolerate a wide range of computing node failure

rate as well as D (product of diagnostic program failure coverage and ratio of transient

failures).

4.1 Effects of Computing Node Failure Rates

Figures 3 and 4 show the system MTTF of various ANTS configurations and a conventional

hybrid N-modular redundancy system (HNMR). The graphs are for (NP, KP)=(8, 3), (8, 4),

(16, 10) and (16, 12), respectively. For the HNMR system, we consider a 3-out-of-8 system

with 32 standby spares. We further assume that these 32 cold spares will not fail while

standby. According to [20], the MTTF of a HNMR(N, M)/S system is derived as:

S N 1
MTTFHNMR = +E -• (10)

i-M

where A is the component failure rate.

Figure 3 assumes a bus failure rate of 10-5 per hour, while Figure 4 assumes that the

bus failure rate is 10-4 per hour. In each case of ANTS configuration, decreases in MTTF

numbers are observed when the bus failure rate is higher. However, the decrease in MTTF

is insignificant compare to the 10 times increase in the bus failure rate. In the above results,

we assume p=0.1, or an averaging diagnostic program checking time of 10 hours. This is

indeed a worst case assumption. Further, D=0.8 is assumed.

Obviously ANTS yields a much higher MTTF than a conventional HNMR system. From

Figure 4, an ANTS system with NP=16 and KP=12 could achieve more than 20 years of

operations even when the computing node failure rate is 3 x 10-" per hours. The above results
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strongly imply that there is no need for ultra-dependable computing nodes. A relatively

inexpensive implementation of ANTS to achieve the MTTF goal is feasible.

4.2 Effects of Failure Coverage and Transient Failure Ratio

One of the reasons that the ANTS concept is a significant improvement with respect to the

conventional HNMR is the fact that the failed computing nodes in ANTS are re-enlisted

after a successful diagnostic program check out. The dependability of a HNMR could be

enhanced using the same technique, but the system computational performance of HNMR

is not comparable to that of ANTS. For instance, the HNMR(32, 8)/32 system has a total

of 40 computing nodes:* eight active ones and 32 cold spares. The entire system is used as a

uniprocessor system. Whereas an ANTS system is a true distributed computer system, all

40 computing nodes could be fully utilized to perform useful tasks.

According to [20], a high system availability could be achieved by one very efficient
"repairman" rather than by an unlimited number of repairmen. In the above dependability

model, we use pD to model the ANTS "repair" process. In Figures 5 and 6, we plot the

system MTTF against the values of D to determine the effect of low diagnostic program

failure coverage and low transient failure ratio.

The plots in Figures 5 and 6 have identical parameters, except for the bus configurations.

In Figure 5, the best case configuration is a (16, 8) ANTS system, which achieves the desired

goal with D as low as 0.35. In the worst case, a (32, 28) ANTS system, the lowest possible

D is about 0.75. Form Figure 6, we find that the requirement of D decreases with a (4, 2)

bus configuration for (8, 4) and (32, 28) configurations. The (8, 3) and (16, 8) configurations

need a higher D to achieve the same level of MTTF when using a (4, 2) bus configuration.

We assume here that p=0.1, or a 10 hours diagnostic program execution time. We

emphasize that this is a worst case assumption. The actual diagnostic program should

execute at a much faster rate.

There are two parameters involved in deriving D: diagnostic program failure coverage and

transient failure ratio. The transient failure ratio is an environmental parameter, in which

we have no control. The failure coverage is the percentage of failures that can be detected

by the diagnostic program. A higher failure coverage is possible by a carefully designed
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diagnostic program. We note that there is a trade-off between the failure coverage and the

program execution rate. Intuitively, a diagnostic program with higher failure coverage takes

longer time to complete.

Assuming that the failure coverage of the diagnostic program is 90%, to reach D=0.35

means that the transient failure ratio must be 0.39. For D=0.75, the transient failure

rate must be 0.83. In other words, given a transient failure ratio, there exists an ANTS

configuration that achieves the goal of MTTF exceeds 20 years.

The study on space shuttle computers [18] assumes that the "self-test" program, which

is equivalent to the diagnostic program in ANTS, has a fault coverage of 96%. Also, a 2:1

and a 4:1 "transient-to-solid", i.e. transient-to-permanent type failures, are assumed in the

dependability analysis. Using the terminology in this paper, a 2:1 ratio means the transient

failure ratio of 0.66, and a 4:1 ratio means the ratio is 0.8.

5 Performance Implications

The goal of the ANTS concept is to achieve both high-performance and ultra-dependability.

In this section, we briefly discuss the performance implications of an ANTS computing

system.

In a real-time distributed computing environment, some computing nodes may be busy

and may be over loaded, while some computing nodes in the system are idle. An uneven

load may result in missing the deadlines of jobs. Obviously, a high level of utilization of

computing nodes is an essential requirement for real-time applications.

A user job is first partitioned into a sequence of tasks, each with specified predeces-

sor/successor relationships. Conventional approaches involve the following four phases [22):

1. Task definition - specify the identity and characteristics of the tasks.

2. Task assignment - the initial placement of tasks on processors [22, 23, 24].

3. Task allocation (scheduling) - local scheduling of individual tasks to computing nodes

with overall progress consideration [25, 26].

4. Task migration (load sharing) - dynamic reassignment of tasks to computing nodes in
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respond to changing loads [27] or system reconfiguration [26]. Existing techniques are

all source-initiated or server-initiated [27].

5.1 Properties of ANTS Concept

Much of the above work does not need to be done at run time if the Active Nodal Task Seeking

(ANTS) concept is used. Each computing node is an Active Nodal Task-Seeker (ANT) which,

when it becomes idle, finds an appropriate, needed task for itself. For convenience, we use

the above four phases as guideposts to describe the behavior of an ANTS sys'

1. Task definition: The task characteristics are defined at compilation timf i'hus, the

ANTS approach does place a significant responsibility on the programmer and compiler

to decompose the real-time work into a sequence of short-running task segments. The

task segments must be short-running in order that processors will become avalable

often enough to satisfy changing real-time priorities such as interrupts associated with

available new information. For many applications, such as communication, active

sonar, radar, and space exploration, this decomposition is infrequently needed after

the initial design of the system. It is essentially a one-time initial investment of effort.

2. Task assignment: The predecessor/successor relationships of each task and its current

priority are the only guide lines for choosing the task segment which is to be executed.

If all the predecessor conditions of a task segment are satisfied, and if there are no

higher priority tasks to be carried out, one of the ANT nodes becoming available will

find and execute this task segment after it begins to seek out needed work.

3. Task allocation: An ANT node finds one of the needed executable task segments

according to the priorities attached to such tasks. An ANT node decides that a task

is executable if it finds from a task table that the predecessor conditions of same task

segment are satisfied.

4. Task migration: Since an ANT node seeks out a task if and only if that ANT is

idle, there is always a strong tendency to distribute needed work and there is no load

balancing or load sharing problem. If an ANT node fails while it is executing a task

and the failure is identified (say by a task timer interrupt because the task took too
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long), the same task is made available for the next ANT node. In other words, there

is a simple and straightforward task migration due to the resulting reconfiguration of

the system, as the failed node is assigned to a separate system partition for testing or

replacement.

5.2 Comparisons

Table 1 summarizes the difference between the ANTS concept and conventional approaches.

The above statements are independent of the details of the underlying architecture. If a

specific architecture is considered, such as multiple bus, hypercube, etc., other considera-

tions must be addressed. For example, the communication costs between different sets of

computing nodes vary significantly from a hypercube system to a local area network (LAN)

connected set of processors. In that case, the seeking methods of the ANT nodes must be

matched to the type of interprocessor communication (IPC) [25]. Nonetheless, the ANTS

concept guarantees that almost no idle computing node exists in the system unless there

are no more tasks listed in the task table or unless there are long communication delays.

Dynamic task scheduling, such as rough grammar approach [26], can achieve about 0.6 com-

puting node busyness, which means about 40% idle nodes on average. We expect a much

higher rate of computing node busyness using the ANTS concept.

Task assignment, task allocation and task migration are all computationally complex.

For instance, task (module) assignment problem is NP-hard in general [23]. Optimal task

allocation or scheduling is NP-complete [26]. Even though polynomial time heuristic algo-

rithms exist for these functions, their computational complexity is still an overhead to the

system performance. Using the ANTS approach, there is no such computational overhead.

Communication overhead still exists using ANTS, but, such communication costs exist

in any distributed system. There appears to be little, if any, extra communication required

by ANTS. For example, in ANTS approach, there is no need for broadcasting. Conventional

approaches usually rely on broadcasting or similar mechanism to maintain awareness of the

current system status [27]. However, broadcasting is the most costly form of communication

in a distributed system. Approaches that avoid the need for broadcasting, such as the

buddy set in [27], could reduce this communication cost but the result will not be optimal.
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The gain in computing node busyness using ANTS will outweigh any slight inefficiency in

communications.

We further note that task definition, task assignment, and task allocation are job oriented.

They, when successfully applied, find the optimal, or near optimal, solution to distributively

execute a given job. If the entire system is used to execute a single job, an optimal execution

time is achieved. On the other hand, under the same conditions, an ANTS system may not

complete this one job in the optimal time. However, a typical system is designed to handle

more than one job at a time. When several jobs need to be executed, the conventional

approaches can only guarantee the optimality of each job but not the overall system perfor-

mance. In other words, local optimal is reached but not the global optimal. An evidence

of this shortcoming is the existence of task migration or load balancing and load sharing

problems. A further evidence is that a typical distributed processing system has a high

computing node idle rate while the task table is not empty. At this end, ANTS system

outperforms the conventional approach in achieving the global optimal. Because the ANTS

concept is similar to a greedy algorithm in that the first priority of an ANT node is to keep

busy. When the computing node idle rate is low, a higher performance may be achieved.

By changing the way the tasks are distributed, the ANTS concept completely changes

the way we deal with the problem of making distributed systems efficient and effective.

In conventional approaches, a distributed system requires a different algorithm in each of

the four phases which are listed above. Although extra one-time work is required from the

programmer and compiler, a distributed system using ANTS needs only one type of algorithm

to achieve the efficiency. Besides, the ANTS concept also provides easy implementation of

fault-tolerant techniques to efficiently achieve a desired level of dependability. In summary,

the ANTS concept appears to be a useful concept for achieving both high-performance and

ultra-dependability for a real-time distributed system.

6 Conclusions

We have presented in this paper the dependability analysis of the ANTS ultra-dependable

multicomputer system and we have argued that high-performance and efficient use of avail-

able processing resources can also be attained. We have shown that the concept of run-time
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partitioning for diagnostic program checking and the re-enlistment greatly enhance the mean

time to failure of the system. The goal of more than 20 years of MTTF could be easily

achieved with computing node failure rate of 5 x 10-1, or MTTF=2,000 hours. This means

that, in ANTS, there is no need for ultra-dependable computing nodes. An inexpensive

implementation is feasible. Of course, for harsh environment such as military applications,

where failure rate is high, ultra-dependable components are still required.

In [5], the Weibull distribution is recommended for its capability to include the aging effect

in failure rate modeling. Even though we use constant failure rate (exponential distribution)

in this analysis, we show that the ultra-dependability of ANTS was not dependent on the low

failure rate of components. Of course, verification of these analysis results requires further

investigation involved fault/error injection experiments. We are currently working on an

emulation system of ANTS with fault/error injections from both hardware and software

sources. Also, further work is needed to quantify our performance analysis.
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Table 1. A comparative view between the ANTS concept and conventional approaches.

Phase Conventional Approaches ANTS

Task Definition Same as that in conventional
Determine the data flow approaches. Except that theProblem: Partition a job into dependancy; estimate run running time of each taska set of tasks to be executed time of tasks; etc. segment is short and withindistributively. pre-defined limits.

Task Assignment No pre-run-time assignment

Problem: Assigning m tasks 1. NP-hard problem. is neccessary, because of theseparation of each job into
to p processors, such that a 2. Polynomial time heuristic short running task segments
high processor utilization is algorithm is used to find by the programmer and
ensured and that the shortest a near optimal solution. compiler.
execution time is achieved.

Task Allocation 1. NP-complete problem. An ANT node fhids one of
Problem: Allocating tasks to the needed executable tasks
processors according to the 2. Polynomial time heuristic according to the prorities
current system status, e.g., algorithm is used to find attached to such tasks. An
cost of inter-processor a near optimal solution. ANT node decides that a
communication (IPC), task is executable if it finds
number of available 3. Require constant update from a task table that the
processors, etc. of system status by means predecessor conditions of

of broadcasting or similar that task are satisfied.
mechanism.

Task Migration () Require constant update of System load is always
Problem: Migrating tasks to system status by means of balanced since an ANT
different nodes due to the broadcasting or similar node seeks out a task if and
changes in the system status mechanism, only if it is idle.
to maintain load balancing.

Task Migration (1) The task being executed

Problem: Migrating tasks to Task allocation may be by the failed node, once
fault-free nodes after system neccessary after a system the failure is identified, is
reconfiguration. reconfiguration. made available for the next

ANT node.

Remarks:

1. The ANTS concept uniformly handles all four phases. Conventional approaches solve

problems in respective phases.

2. The ANTS approach needs little or no computational time and resources.
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